Del på









Vektorer i planen

Om vektorer i planen

En vektor er en retning og en længde.

Almindelige tal kaldes skalarer, men da disse kun har én størrelse, er det ikke nok til at beskrive alle fænomener.

Vektorer bruges tit inden for fysik til at beskrive kræfter eller acceleration.

En vektor har ikke noget fast begyndelsespunkt - det er kun en retning og en længde.

Gav afsnittet mening?

Gå videre til: Vektor ud fra to punkter

Vektor notation

Vektor med retning og længde
En vektor skrives normalt med en pil over sig.

De to mest almindelige måder at skrive en vektor på er:

Vektor som retning og længde:

 ->{a}=L_|v

Vinklen er i forhold til x-aksen (på samme måde som i enhedscirklen).

Eksempel:

 ->{a}=5_|37^o

Vektor som "retvinklet trekant:"

En anden måde (og den mest almindelige) er at skrive en vektor som en "retvinklet trekant".

 ->{v}={x over y}
Vektor som retvinklet trekant

Her viser x, hvor langt man skal ud af x-aksen, og y hvor langt man skal ud af y-aksen.

Eksempel:

 ->{v}={4 over 3}

Omregning:

Man kan omregne fra vinkel- og længdemåden til retvinklet trekant-måden ved at bruge følgende formel:

 ->{a}=L_|v={L*cos(v) over L*sin(v)}

Stort set alle formler for vektorer bruger "retvinklet trekant"-tegnet.




Emnet "Vektorer i planen" fortsætter: Vektor ud fra to punkter

Gav afsnittet mening?

Gå videre til: Vektor ud fra to punkter